Experimental Evolutions

Chemostat-Based Experimental Evolutions

Alex Ward and David Gresham June 2008

Aim:

The aim of these experiments is to subject yeast to long-term selections in chemostats. A steady-state chemostat culture is established under some defined nutrient limitation and maintained for hundreds of generations. During the selection samples of the population are taken and archived at -80C. Upon completion of the selection experiment clones are isolated from the population for further analysis.

To begin:

- Determine which strain you wish to use and the desired limiting nutrient (see chemostat manual)
- Autoclave vessels with the rotors set for 200mL (place the rotor at the bottom of the rod)
- Make 10L of media per vessel and be aware that you will have to change out the media bottle once every 2 weeks
- Inoculate vessel with 1mL O/N culture
- Set dilution rate to obtain the desired growth rate for evolution. We use D=0.12 by setting pumps to 20/2 for 200mL vessel (i.e. generation time ~6 hours)

Sampling and maintenance:

- Determine that steady-state has been attained
- Sample the chemostat at defined intervals. We sample on Monday, Wednesday and Friday.
 - Passively sample into a sterile Klett tube
 - Take a Klett measurement, coulter count and freeze 1mL of sample in 500uL 50% glycerol at -80C
- Take any notes throughout the evolution regarding any mishaps
- Change the media bottle as necessary -once every 2 weeks

Ending Experiment:

- At the end of the evolution (after 250 generations)
- Sample chemostat as per usual and take relevant measurements
 - Sonicate cells using sterile technique (i.e. sterilize sonication probe with ethanol)
 - Determine cell count using coulter counter and make relevant dilution in sterile water
 - Plate enough cells on YPD and minimal media plates to get ~250 colonies x 3 plates
 - Allow cells to grow for 2 days
 - Photograph plates

Clone preservation:

- Aliquot 100uL YPD into sterile 96 well plate
 - Pick an unbiased sampling of colonies using toothpick and inoculate individual wells
 - Place ancestor (we used FY4 (MATa prototroph)) in position A4
 - Do not inoculate H96 as it is used as a contamination control
- Allow three days growth in a plastic bag in 30C room
- Make two replica plates
 - Fill 2 x 96well plates with 95uL YPD (one is a copy plate and one is a working plate)
 - Take 5uL from master plate ¿ inoculate copy plate by pipetting up and down, take 5uL from that plate and inoculate working
• Place plate on baffles, allow them to grow 2 days at 30°C
• Add ~75μL 30% glycerol to master plate (this reduced volume accounts for evaporation) and freeze at -80°C.
• The next day cover this plate with tinfoil tape.
• After two days add 95μL 30% glycerol to copy plate and freeze at -80°C. Foil the next day.
• Use working plate for initial clone characterization

Clone characterization:

• Add 95μL of relevant growth media to a 96 well plate and inoculate with 5μL of working plate, grow in Tecan using GreshamGrowthRate.mth -> Name file e.g. CDG21_400uMAmmoniumSulfate (make sure you save the excel spreadsheet at the end of the run)
• Use 96 well frogger to frog working plate onto rectangular YPD plate. Allow two days growth, take a photo and keep at 4°C. Working plate can be kept at 4°C.