Quick Links

<table>
<thead>
<tr>
<th>Category</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC Home</td>
<td>Getting an account, Getting started on Prince</td>
</tr>
<tr>
<td>Prince How-to</td>
<td>Articles</td>
</tr>
<tr>
<td>Clusters and Storage</td>
<td>Prince (HPC), Dumbo (Hadoop), Brooklyn (OpenStack), Dlama (NYU Abu Dhabi)</td>
</tr>
</tbody>
</table>

Logging in
- Windows
- Mac / Linux
Transferri
g data
to/from
the
clusters
Transferri
g data
to/from
Prince
cluster
using
Globus
Submittin
g jobs
with
sbatch
Available
software
Licensed
Software
Available
on the
HPC
Cluster
Building
Software
Slurm
Tutorial
Tutorials
FAQs
Scratch
Area
Cleanup
Programming
for
Biologist
s
Acknowle
dge
Statement
Research
Gallery
HPC
People
Brooklyn Research Cluster

Brooklyn Research Cluster is currently in its alpha phase. Starting in Spring it will go into its Pilot phase.

Features

Brooklyn Research Cluster provides Infrastructure as a Service.
- Users request the resources they need for their project
- The system configures requested resources and gives low-level control to the user.

Users are free to utilize the system in whatever manner their research requires
- They can install packages, customize the system, run/modify system services.
- This allows experienced researchers to work independently of support staff, improving productivity and freeing support staff to work on larger issues.

Brooklyn Research Cluster allows operations that are not normally available on traditional clusters
- Users can create snapshots of their systems allowing them to go back to past states if an experiment goes awry or to reproduce an experiment at a latter date.
- Users can create virtual networks allowing control of communication between different nodes. This is particularly useful for developing networking applications.

Rich library of supported environments
- These environments can be provisioned with a push of a button making the set up seamless.
- These environments do not necessarily need to provide root access, ensuring that the system would work as expected.
- This could allow administrators to provide the same level of support to users who don’t need full control of the system or don’t have the technical skills necessary.

Hardware Specifications

<table>
<thead>
<tr>
<th>System Name</th>
<th>Brooklyn Research Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>100Gbit Ethernet network allows for fast communication between compute servers and between the compute and storage servers. 10Gbit network provides uplinks to the NYU network 1Gbit networks provides management of the cluster</td>
</tr>
<tr>
<td>Servers</td>
<td>The cluster consists of 25 compute servers Each server has two 14 core Intel E5-2690v4 with a total of 28 cores running at 2.6 GHz The servers each have 256Gb of DDR4 RAM. The cluster is equipped with 80 P100 GPUs with 12Gb RAM each. The cluster is equipped with 20 P40 GPUs with 24Gb RAM each to be provisioned as bare-metal nodes only New compute servers can be added, regardless of specs or vendor.</td>
</tr>
</tbody>
</table>
Storage

The compute nodes are backed by a Ceph storage system.

- The storage has 300TBs of storage (100TBs usable).
- Ceph provides storage for images, volumes and data.
- The system provides researchers with high bandwidth consistent storage.
- The storage is scalable, new storage servers can be added as needed, without vendor lock in.

Request an account on Brooklyn Research Cluster

Logging in to Brooklyn Research Cluster

Launch an Instance

Upload an Image

Flavors in Brooklyn Research Cluster