<table>
<thead>
<tr>
<th>Quick Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC Home</td>
</tr>
<tr>
<td>Getting an account</td>
</tr>
<tr>
<td>Getting started on Prince</td>
</tr>
<tr>
<td>Prince How-to Articles</td>
</tr>
<tr>
<td>Logging in</td>
</tr>
<tr>
<td>Windows</td>
</tr>
<tr>
<td>Mac / Linux</td>
</tr>
<tr>
<td>Clusters and Storage</td>
</tr>
<tr>
<td>Prince (HPC)</td>
</tr>
<tr>
<td>Dumbo (Hadoop)</td>
</tr>
<tr>
<td>Brooklyn (OpenStack)</td>
</tr>
<tr>
<td>Dalmatia (NYU Abu Dhabi)</td>
</tr>
</tbody>
</table>
Transferri ng data to/from the clusters
Transferri ng data to/from Prince cluster using Globus
Submittin g jobs with sbatch
Available software
Licensed Software Available on the HPC Cluster
Building Software
Slurm Tutorial
Tutorials
FAQs
Scratch Area Cleanup
Programming for Biologists
Acknowle dge Statement
Research Gallery
HPC People
Logging In

To set up a reusable tunnel, follow the instructions here.

```
# via a previously-created and started tunnel:
ssh prince

# create a one-off tunnel:
ssh -L 8023:prince:22 NetID@hpc.nyu.edu
# use it (in another terminal window)
ssh -X -p 8023 localhost
```

Finding Software (modules)

```
# list the available modules
module avail

# ok, that list was too long. I want matlab.
# Show me modules starting with 'm'
module avail m

# check what modules I currently have loaded
module list

# unload all of them
module purge

# load matlab
module load matlab/2014a
```

Interactive session
start an interactive batch setting with
default limits (1 CPU for 1 hour walltime)

qsub -X -I

I need 4 CPUs, and for 2 hours:
qsub -X -I -l nodes=1:ppn=4 -l walltime=2:00:00

I need more than 4 hours, and don't mind waiting
a while for it to start (the fast-response
interactive queue has a limit of 4 hours, so must
use the standard queue)
qsub -X -I -l walltime=8:00:00 -q s48

Transferring files to/from the cluster

These examples assume you have an ssh tunnel running!

copy from my workstation to my $HOME on Prince:
scp file1 file2 file3 prince:

copy whole directories from my workstation
to $HOME on Prince:
scp -r dir1/ dir2/ prince:

copy, keeping permissions and modification times
scp -p file1 file2 prince:

copy from my workstation to my $SCRATCH on
Prince: (note the '\')
scp file1 file2 file3 prince:\$SCRATCH

A better way:
replicate the current directory from my workstation
as $SCRATCH/my_data on Prince - only sending files that
are not already there, or are there but not the same:
rsync -a . prince:\$SCRATCH/my_data

the same, more noisily so I can see what was transferred:
rsync -av . prince:\$SCRATCH/my_data

Sample PBS job scripts
6-hour, 1-CPU job, named the same as the script

```bash
#!/bin/bash
PBS -l mem=4GB
PBS -l walltime=6:00:00

cd $SCRATCH/my_run_dir
./model.exe > model_out.txt
```

6-hour, 8-CPU OpenMP (threaded), named the same as the script

```bash
#!/bin/bash
PBS -l mem=4GB
PBS -l walltime=6:00:00
PBS -l nodes=1:ppn=8

# optional but not necessary:
# export OMP_NUM_THREADS=$PBS_NUM_PPN
./my_program
```

Running an MPI job

Pure MPI (1 CPU per MPI task), 4 MPI tasks, total memory 40GB (10GB/task)

```bash
#!/bin/bash
PBS -l mem=40GB
PBS -l walltime=6:00:00
PBS -l procs=4

module load openmpi/intel/1.6.5

cd $SCRATCH/my_run_dir
# run one MPI task on each CPU
# (equivalent to mpiexec -np $PBS_NP ./my_program):
mpiexec ./my_program
```
#!/bin/bash
#PBS -l mem=40GB
#PBS -l walltime=6:00:00
#PBS -l nodes=4:ppn=8
module load openmpi/intel/1.6.5

cd $SCRATCH/my_run_dir
export OMP_NUM_THREADS=$PBS_NUM_PPN
mpiexec --bynode -np $PBS_NUM_NODES ./my_program