8. FAQ

This section will focus on questions that you should be prepared to deal with – some innocuous, some more difficult. Think about how you would answer these for your particular study (if applicable), and put answers in your own words, so you can deliver comfortable, confident answers to parents.

 a. Tell the parent that their child was a great participant. Point out exactly how the child was helpful (e.g. “she was very attentive and watched our whole show”, “he gave great, detailed explanations for my questions”, “he looked just where he thought the block would appear”).
 i. You may also want point out things that were obvious digressions and explain them away (e.g. “your child decided to use the wands as drumsticks, which is definitely a creative approach that she found much more interesting than our task. This may tell us we need to modify our stimuli”).
 b. Sometimes this is the first thing a parent says after the study is completed. Use this question as a launching point into your debriefing to describe exactly what the child did during the study, while of course explaining the science. See “Debriefing Parents” section.
 c. Explain that this isn’t a “test” to pass or fail. We’re actually looking to your children to tell us what is “right” or “normal”. We look to see on average how a group of children will react to the task as compared to another group seeing slightly different evidence.

2. What's this study about? What studies are you doing today?
 a. If before study:
 i. If adult has children in tow, ask how old they are. If kids are in your range, explain study as you would to recruit!
 ii. If no kids are in your range, give a full debrief explanation to the adult.
 b. If after their child has been run:
 i. Pre-empt this question and debrief all parents right after study!
 ii. Give your debriefing explanation.

3. My child is (age is too old/too young), can she participate?
 a. Explain that the study is designed for children age x-y, so you can’t collect data, but you’d be happy to demo the study for the child and explain what the study is about if they want.
 b. Based on what you think they child can handle, modify your methods to provide an engaging experience for the child (for example, it would be difficult to get a 2-year-old to make predictions/explanations about how objects interact. For significantly older children, think about explaining study as you demo, using simple language).
 c. Always make sure that the family is having a positive experience.

4. My child is not typically developing, can she participate?
 a. Yes, of course! Anyone is welcome to participate!
 i. Modify your methods if necessary. We typically cannot use data if the child has more severe cognitive challenges (e.g. ASD, down syndrome). We usually can use data from children with ADD if they are able to get through the study. If you know from the start that you cannot use the data, but the family is eager to participate, you can just run a short version of the study.
 b. If a parent asks if the data will be used, or if her child’s condition makes a difference, be honest. Explain that our research generally describes, on average, what children may be capable of at a certain point in development. Therefore we collect data on typically developing children within a certain age range. However, all children are welcome to participate and learn about the study.

5. Can you watch my child? / Can I leave my child with you? (participants or siblings)
 a. We must never be alone in a private space with a child.
 ii. Parents must stay with children at all times. If the parent wanders off, you must stop the study immediately and bring the child over to the parent. Parent must stay in the testing room.

6. I’m a nanny/grandparent/non-guardian, and I have permission to sign for child.
 a. Instruct adult that our review board requires a legal guardian signature, and we unfortunately cannot accept any other form of consent. However, we can of course demo the study and explain it if they want.
 b. However, if a grandparent/guardian insists that they do have legal guardianship over the child, do not question them, as this may be hurtful to the parent and child.

7. What are you studying? / What kind of work do you do? / What lab is this?
 a. Explain who you are (grad/undergrad at NYU doing research with the Conceptual Development and Social Cognition Lab). Feel free to explain your personal research interests.
b. Explain the lab:
 i. (e.g., “We are the Conceptual Development and Social Cognition Lab, run by NYU professor Marjorie Rhodes. We study
 cognitive development. We are interested in how children learn and reason about the world around them.”)

8. Why do some kids “get it” and not others? / Do all kids get it? / What do others do?
 a. Explain that this isn’t a “test” to pass or fail. We’re actually looking to your children to tell us what is “right” or “normal”. We look to
 see on average how a group of children will react to the task as compared to another group seeing slightly different evidence.
 b. Explain that every child develops at a different pace. There are many factors that can affect what a child does in our tasks.
 Hopefully we control for many of these factors, but this is why we look at a group of children to see, on average, what children
 may be capable of.
 c. Explain the different things a child might do in your study, and why
 ii. Emphasize that all these things are perfectly reasonable and typical.

9. How can I find out the results of this study?
 a. Explain research process so adult has a sense of the time scale.
 b. Parents can learn more about these studies on the CDSC website, Marjorie’s website, our lab newsletter, and on the parent
 consent form brochure.
 c. We will also have a sheet where parents can give us their email so that we can send them an updated newsletter at the end of the
 school year.

10. So what do you do next? / Other research process questions?
 a. The research process is longer than you might think. You’re near the (beginning, middle, end) of collecting data now, and so far
 our finding (x).
 b. After analyzing the data, you will write up the paper for publication in a scientific journal.
 c. Your article will be reviewed by other scientists, and hopefully (eventually) accepted.

* Any question on which you’re not an expert / Any question not pertaining to our lab’s
research / Any question you don’t know the answer to:
 a. I don’t know – a very legitimate answer to a question, as long as you give the adult a way to find out the answer! Most important
 thing: don’t make something up.
 i. “That question might be best directed to your pediatrician.”
 ii. “I’m not sure, but (x resource) might be a good place to start to find more information.”
 iii. “I’m not an expert in that area. My research focuses on (x), but I know (person) does some work in that area. Here’s how you
 can get in touch with this person.”
 iv. “Let me ask the senior researcher in my lab.” Take down contact information, and pass the question along.

11. Why is this important? / So what? / What does this mean?
 a. Explain the ‘big picture’ of your study (which you should also do in your debriefing).
 i. We’re hoping this research will help show how children are able to...
 ii. This gives evidence that...

12. How does this relate to me / What can I do at home?
 a. Emphasize that we are doing basic, empirical science that asks fundamental questions about the nature of learning. We don’t test
 any direct, “real life”, application, but want to understand how the mind is structured and how it develops. We hope to inspire people
 to understand that children are immensely powerful learners, and are learning through just about everything they do.

13. Does this have implications for education?
 a. Explain that we are doing basic, empirical science that asks fundamental questions about the nature of learning and development.
 We don’t work on the level of direct, educational applications. We do hope that scientists who work in educational psychology and
 education theory might be inspired by our research when developing their own. We can hope to inspire people to understand that
 young children and even babies are immensely powerful learners capable of understanding much more than we might think.

14. Does the population here affect your results?
 a. There’s no doubt that we might be getting a less-than-representative sample by running children of parents willing to bring their
 child into a children’s museum, and excited to volunteer in research.
b. However, our studies are controlled so that children are randomly assigned to different experimental conditions. The only difference between two conditions should be the kind of evidence they see. So, we’re not looking at the abilities of individual children; we’re comparing what the children do with different kinds of evidence.

15. Are there any gender differences in your studies?

a. Thus far, we haven’t found gender differences in any of our lab’s studies. This is not to say that gender differences don’t exist, but we haven’t come across any in children’s abilities with these types of reasoning.