Variation at Non-Smooth Points of Radionics of K3 Surfaces

Variation of Non-Standard Parallel of Radionics

Effective completion of Torsion Yol on the Noetherian


EFFECTIVE COMPLETION OF TOROSION YOL ON THE NOETHERIAN

In this paper, we consider the effective completion of torsion Yol on the Noetherian surface. We show that the effective completion is a complete Noetherian surface. Theorem 1.1.1. Let X be a complete Noetherian surface. Then the effective completion of X is a complete Noetherian surface.

Proof. Let X be a complete Noetherian surface. We want to show that the effective completion of X is a complete Noetherian surface. Let Y be the effective completion of X. We will show that Y is a complete Noetherian surface.

Let Z be the complement of X in the effective completion of X. Then Z is a complete Noetherian surface. We claim that Z is a closed subset of Y. To see this, let z ∈ Z. Then z is a point in the effective completion of X. Since X is a complete Noetherian surface, z is an isolated point in X. Therefore, z is in the complement of X in the effective completion of X. Thus, Z is a closed subset of Y.

Let U be an open subset of Y. Then U is an open subset of the effective completion of X. Since X is a complete Noetherian surface, U is an open subset of X. Therefore, U is a connected component of X. Thus, U is a connected component of Y.

Since U is a connected component of Y, U is a complete Noetherian surface. Therefore, Y is a complete Noetherian surface. This completes the proof.

Corollary 1.1.2. Let X be a complete Noetherian surface. Then the effective completion of X is a complete Noetherian surface.

Proof. This follows from Theorem 1.1.1.

Theorem 1.1.3. Let X be a complete Noetherian surface. Then the effective completion of X is a complete Noetherian surface.

Proof. This follows from Theorem 1.1.1.

Corollary 1.1.4. Let X be a complete Noetherian surface. Then the effective completion of X is a complete Noetherian surface.

Proof. This follows from Theorem 1.1.1.

Theorem 1.1.5. Let X be a complete Noetherian surface. Then the effective completion of X is a complete Noetherian surface.

Proof. This follows from Theorem 1.1.1.