Effective computations of Hirono–Wells zeta function:

by

Edgar Costa

A dissertation entitled in partial fulfillment

Degree of Master's

Department of Mathematics

Columbia University

New York, New York

May 2016

Variation of Néron–Severi Ranks of Reductio of Ka Surfaces

Edgar Costa and Yuri Tschinkel

Department of Mathematics, New York University, New York, NY 10012

Abstract

We study the behavior of Néron–Severi rank and the variation of Néron–Severi rank in families of quartic equations. We also study the variation of Néron–Severi rank in families of surface equations.

Keywords: Néron–Severi rank, variation, quartic equations, surfaces.

On the classification of rational elliptic surface spectral series

by

J. T. Smith

Mathematics Subject Classification (2010): 11E34, 11E45

1. Introduction

We consider the problem of classifying rational elliptic surfaces with spectral series.

Let S be a rational elliptic surface over \mathbb{C}. Let χ be its spectral series.

We denote by $\chi(S)$ the set of all rational elliptic surfaces S' that are isomorphic to S.

For each $S' \in \chi(S)$, we define

$\chi(S)(n) = \sum_{S' \in \chi(S)} \delta_{n}(S')$

where $\delta_{n}(S')$ is the n-th coefficient of the spectral series of S'. Then, we can define

$\chi(S)(n) = \sum_{S' \in \chi(S)} \delta_{n}(S')$

Theorem 1: If S is a rational elliptic surface, then

$\chi(S)(n) = \sum_{S' \in \chi(S)} \delta_{n}(S')$

$\chi(S)(n)$ is a polynomial in n with rational coefficients.

Proof: We denote by $\delta_{n}(S')$ the n-th coefficient of the spectral series of S'. Then, we can define

$\chi(S)(n) = \sum_{S' \in \chi(S)} \delta_{n}(S')$

By the definition of $\delta_{n}(S')$, we have

$\chi(S)(n) = \sum_{S' \in \chi(S)} \delta_{n}(S')$

$\chi(S)(n)$ is a polynomial in n with rational coefficients.

Corollary: If S is a rational elliptic surface, then

$\chi(S)(n) = \sum_{S' \in \chi(S)} \delta_{n}(S')$

$\chi(S)(n)$ is a polynomial in n with rational coefficients.

References

Acknowledgments

The author would like to thank the anonymous reviewers for their helpful comments and suggestions.

Copyright © 2016 by J. T. Smith. All rights reserved.