Major Assignment III: Mechanics Game (usually assigned first session of week 3 due first session of week 5)

Educational Goals for Unit 2

- get comfortable with thinking about mechanics as a starting point for game ideas...
- ...including the possibilities created by common physical materials (grids, cards, dice, tokens)
- ...as well as more abstract structures of system & interaction (ticking clock, modular units, victory points, real-time play, etc)
- working well together in groups, in practice over a two-week assignment with 3-4 people
- playtesting with each other, with classmates, and with strangers (e.g. at Playtest Thursday, a barely-public space!)
- integrating finding from playtests into changes and iteration
- understanding the traditional role of uncertainty in games
- understanding basics of probability for games, including independent and dependent events (dice vs cards), perceptions and fallacies of probability, the difference between hidden information and randomness, etc.
- understanding basics of feedback loops, both reinforcing (“snowball” or “positive”) and balancing (“catch-up” or “negative”)
- practice writing rules for clarity and disambiguation
- (possibly) designing for intuitive learning, to make writing & learning rules easier
- (possibly) basics of Adobe Illustrator

Class-by-Class Lesson Plan

Sample lesson plans by Eric with times for each activity in each class, starting with the final class of the previous unit where the assignment for this unit is introduced.

Week 3, Class 2: Probability and Feedback Loops

- Probability Discussion – some of the main concepts from the readings (Rules of Play Ch.15)
 - uncertainty in games: macro (don’t know who will win, outcome uncertain; many sources of uncertainty including other human players, hidden information such as unrevealed cards, as well as probability) and micro (probability and information)
 - perceived vs real probability: it doesn’t actually work the way human beings think it does
 - Richard Garfield’s example of a streak of heads and tails coin-flips. Which one is real?
 - 00101001010010101010100101001010110101
 - 1110000101000000011000010101111111
 - Many people, including a lot of game-players, believe the first one is more natural, random and real, while something with long streaks and patterns like the second example is rigged or broken. But the second type (Garfield had an actually randomly-generated one in his talk) is the true example; randomness does not mean there are no streaks or patterns, quite the opposite. You need to alter or rig randomness to produce “evenly distributed noise” with no clumps.
 - common fallacies in the perception of probability
 - thinking that “winning streaks” or “losing streaks” become more likely to continue or be broken – nope, chance stays the same
 - thinking that “lightning never strikes the same place twice” but also that “a particular slot machine can be lucky”
 - overvaluing a “long shot” with a big payout rather then a safe bet with a small payout
 - adding chances rather than multiplying – is the chance of rolling a 6 with two dice twice the chance of rolling a 6 with one die (2/6 rather than 1/6)? Nope! It’s 1 - (5/6 x 5/6).
- Probability examples for discussion (slides for many of these can be found below)
 - getting heads + tails – calculating the odds
 - You can double your money in a game where a coin is flipped twice, and you bet on how many heads – what’s a good bet?
 - Have students call out their bets; “one head” is the best bet because it can occur two ways (first coin heads, second coin tails OR vice versa) whereas “two heads” and “zero heads” can only occur one way
 - Of course, you’ll still only win half the time (“one head” happens 50% of the time)
 - chance of having two daughters if you have two children (it’s 25% – this can be illustrated with a punnet square of the possibilities)
 - “If someone has two children and you know one of them is a daughter, what is the chance that I have two daughters?”
 - Ask students to guess – answer is 33% because you can eliminate the “two boys” possibility in the above punnet square
 - other examples of this kind are in Jesse’s slides, and in books on probability/statistics like The Drunkard's Walk...
• two students lying to a teacher/principal about a tire blowing out on their bus coming to school
 • they are separated and the principal asks them which tire blew out: what is the chance that they randomly pick the same
 tire and get away with it? Ask students to guess.
 • it's 25% because there are 16 possible combinations (first student has 4 tires to pick from, second student has 4 tires to
 pick from) and in 4 of those they pick the same tire (front left + front left, front right + front right, etc)
 • Jesse has added: if the students are smart and don't randomly pick a tire, they might be more likely to pick the front left
 tire, which in countries where you drive on the left side of the road is the most common to blow out
 • can point out that this is similar to the chance of rolling doubles (6 out of 36 combinations of two standard dice being
 rolled are doubles)
• monty haul problem: goat behind two doors, new car behind one door (and assume player wants the car, doesn't want the goat –
 someone always says "but I'd prefer a goat!"
 • after player picks a door, game show host opens one of the other doors to reveal a goat (note: the game show host never
 reveals the car, always opening a door with a goat! this is important!)
 • should the player switch doors? yes, it's always better to switch.
 • Many students believe the chance of being right has gone from 1/3 in the first choice to 1/2 in the second choice, thus it
 doesn't matter if you switch
 • The real question is "what is the chance you were right or wrong in the first choice?" 1/3 chance of being right, 2/3
 chance of being wrong. The gameshow host always eliminates (by opening) one of the doors in the 2/3 you did not
 pick – thus the only remaining door represents 2/3 chance of being right.
 • This is very hard for many students to wrap their heads around but is a great example of information changing a game
 situation! Can point out that many mathematicians were stumped by it, but it's now recognized to be the right answer.
 Marilyn Vos Savant, a newspaper columnist, published the solution in 1990 and many did not believe her (sexism?) but
 she was right.
 • There are online simulators of this that track success over thousands of trials and the probability is shown, empirically, to
 also level out around 1/3 success for not switching, 2/3 success for switching.
• Exercise: Squoddron (dice game about the intersection of probability and rock-paper-scissors — see below)
• Exercise: Bugs vs Troopers (game illustrating the difficulty of estimating probability – see below)
• Discussion of Cybernetic Systems (Rules of Play, Ch. 18 and/or "MDA" paper)
 • Diagram some basic feedback loops
 • Microphone and speaker – positive feedback loop or "snowball" loop or "reinforcing" loop. Sound goes in mic, is
 amplified, comes out of speaker, is picked up by mic again, amplified more, etc. Screech! "Feedback."
 • Air conditioner / thermostat – negative feedback loop or "catch-up" loop or "balancing" loop. Temperature goes up, air
 conditioner kicks in, lowers temperature, air conditioner goes off.
 • Predator / prey population dynamics – negative/balancing
 • Global warming – positive/reinforcing loop
 • "Rich get richer" – positive/reinforcing loop
 • Game examples: rubber-banding in a racing game like Mario Kart. "Rich get richer" mechanics in Monopoly, or many other
 games where "winning helps you to win some more." Kill-streak bonuses, economic build-up, etc.
 • Pool is a great elegant example that has both: if you sink a ball, you go again! Reinforcing/positive loop. The more balls
 you sink, the fewer viable targets you have to shoot! Balancing/negative loop. Both can be in a game!
 • Exercise: Kingdom (letting players play with and modify feedback loops – see below)

Week 4, Class 1: Writing Rules
Week 4, Class 2: Mechanics Game Lab
Week 5, Class 1: Play & Critique Mechanics Game

In-Class Exercises
Exercise: Collaboration Styles
Exercise: Squoddron
Exercise: Invaders
Exercise: Kingdom
Exercise: Rules of Mancala
Major Assignments

Major Assignment: Mechanics Game

- Have the Mechanics and Material Cards ready, just one copy of each card.
- Divide students into teams of 3-4. At this point in the semester, random group assignment is probably still fine. There should ideally be 4 groups, 5 if you have a class larger than 17.
- Show the cards and explain that these will be the constraints they're working with for this project. You can use the Mechanics Game Infosheet to answer questions about what the cards mean.
- Have groups roll to see who goes first. (High roll or low roll, your pick.) Do a “snake draft” with the two types of cards: if group A is going first and D last, then have them pick A B C D D C B A. Group A will pick either a material constraint (blue card) or abstract mechanical constraint (red card) first, but will also pick last – either a blue card or red card depending on which they didn't pick first. Group D will be the last to pick a card, but gets to pick two cards.
- Make it clear that the constraints picked are not the only elements of the game they’ll make, but should be among the primary elements, strongly contributing to the feel of the game (not just incidental).
- Due in two weeks but they must have a working prototype in one week. Explain the lab schedule: there’s no lab for the next two classes, then a lab session, then the game is due. They should meet outside of class!
- If you want to you can require students to playtest at Playtest Thursday for this project. Pick the final Thursday before the game is due?
- It's OK to try out different ideas for this project; try using brainstorming techniques from the collaboration discussion. But remember: to move forward, you have to stop brainstorming and start prototyping! It's possible to brainstorm or discuss/argue forever; sooner or later, you have to try something.

Readings for Unit 2 - Mechanics and Structure

Assigned Week 2 (at end of last unit) to be discussed in Week 3

Standard Readings (These readings are referenced in the lesson plan, tend to relate to unit educational goals, and are often from Rules of Play, but can be supplemented / replaced!)
 - Rules of Play, Chapter 15: Games as Systems of Uncertainty (sources of uncertainty, randomness and probability, basics of probabilities with dice, the feeling of chance in games, fallacies of probability)
 - Rules of Play, Chapter 18: Games as Cybernetic Systems (feedback loops, dynamic difficulty)

Alternate Readings (Someone’s assigned one or more of these in the past! Feel free to sample.)
 - MDA: A Formal Approach to Game Design and Game Research by Robin Hunicke, Marc LeBlanc, and Robert Zubeck (mechanics/dynamics/aesthetics framework, feedback loops)